Cyclotron Resonance in InMnAs Films and Heterostructures

- J. Kono,¹ M. A. Zudov,^{1*} Y. H. Matsuda,² T. Ikaida,² N. Miura,² G. D. Sanders,³ C. J. Stanton,³ and H. Munekata⁴
 - ¹ Department of Electrical and Computer Engineering, Rice University
 - ² Institute for Solid State Physics, University of Tokyo
 - ³ Department of Physics, University of Florida
 - ⁴ Imaging Science and Engineering Laboratory, Tokyo Institute of Technology
 - * Present address: Physics Department, University of Utah

Work supported by DARPA through grant No. MDA972-00-1-0034 (SPINS).

InMnAs Alloys and Heterostructures: First-grown III-V DMS

- InMnAs alloys and InMnAs/AlGaSb heterostructures
 - o First grown III-V dilute magnetic semiconductor (DMS) system

H. Munekata et al., Phys. Rev. Lett. 63, 1849 (1989).

- Combining semiconducting and magnetic properties
 - implementing spin degree of freedom in semiconductors - new device applications
 - $_{0}$ Novel ferromagnetic semiconductor devices with high Curie temperatures, T_{C}
- Need to understand transport and optical properties
 - o Band parameters (m^* and g-factor) have not been determined
- What is the effect of Mn ions on the band parameters?

Effects of Mn on mass and g-factor

- Localized *d*-like electrons in Mn ions strongly influence:
 - o Electrons in CB via s-d exchange interaction α
 - o Holes in VB via p-d exchange interaction β
- Determining α and β is important to understand:
 - Mn-e states and mixing of delocalized and localized carrier states
- InMnAs is a narrow gap SC
 - o Due to strong interband mixing α and β are not independent
- The best way to determine α and β is CR and ESR but
 - No CR and ESR studies in III-V DMS systems
- We have made the first observation of CR in:
 - o *n*-type films with various Mn content
 - o p-type films and heterostructures with different T_C
 - o *n* and *p*-type InMnAs/InAs superlattices

Samples

- *n*-type (paramagnetic)
 - o $In_{1-x}Mn_xAs$
 - o x = 0, 2.5, 5.0 and 12.0 %
 - o $\mu \sim 450 \text{ cm}^2/\text{Vs}$
- *p*-type (ferromagnetic)

o
$$In_{1-x}Mn_xAs/InAs$$
 $x = 2.5 \%$ $T_C < 10 K$

- o $In_{1-x}Mn_xAs/GaSb \ x = 9.5 \% \ T_C = 35 \ K$
- InMnAs/InAs superlattices
 - o 5nm/5nm×101 periods

•
$$T_s = 300^{\circ}C \rightarrow p$$
-type

- o 5nm/5nm×85 periods
 - $T_s = 200^{\circ}C \rightarrow n$ -type

InMnAs

GaAs

GaAs(100) subs.

InMnAs

InAs or GaSb

GaAs

GaAs(100) subs.

InMnAs/InAs superlattice

InAs

GaAs

GaAs(100) **subs.**

Megagauss cyclotron resonance

(with a destructive pulsed magnet)

- Megagauss Laboratory, Univ. of Tokyo
- Transmission is recorded twice, both on the up- and down-sweep
- Sample survives
 - o many measurements on a single sample

Experimental setup

This facility can generate up to ~200T (2MG)!

CR in *n*-type $In_{1-x}Mn_xAs$ ($T = 30 \text{ K}, \lambda = 10.6 \mu\text{m}, e\text{-active}$)

- All samples show pronounced absorption peaks and the peak position systematically shifts to lower magnetic fields with increasing Mn content
- Cyclotron masses:

<i>x</i> (%)	0	2.5	5	12
$m_{CR}(m_0)$	0.0342	0.0303	0.0274	0.0263

- o m_{CR} decreases by ~25%
- o CR: From LLL to 1stLL @ 117 meV
 - values are larger due to nonparaboplicity
- The absorption strength (electron density) decreases with increasing x
 - Free e are provided by excess As, so increasing x results in compensation

Cyclotron Resonance in n-type $In_{1-x}Mn_xAs$

(Room temperature, $\lambda = 10.6 \mu m$, *e*-active)

<i>x</i> (%)	0	2.5	5	12
$m_{CR}(m_0)$	0.0341	0.0334	0.0325	0.0272

- Similar behavior at room T
- Non-parabolicity induced spin splitting of the CR peak in the reference sample
- FTIR: band gap E_g decreases with x

Effective Mass Theory

(calculations by Gary Sanders in Prof. Stanton's group)

- Pidgeon-Brown 8 x 8 bands method (including non-parabolicity) applied to In_x Mn_{1-x}As with B along [001]
- sd and pd exchange interactions between delocalized s & p electrons and localized Mn d electrons with average spin, $S = \langle S_z \rangle \hat{z}$.

$$H_{sp-d} \propto J \sigma \cdot (x \langle S_z \rangle \hat{z})$$

• Exchange is parameterized by:

$$\alpha = \frac{1}{\Omega} \langle S | J | S \rangle; \qquad \beta = \frac{1}{\Omega} \langle Z | J | Z \rangle$$

- Narrow gap: both α and β are important in calculation of the CB LLs
- Estimate for InMnAs: β =-0.98 eV Dietl et al. PRB **63**, 195205 (2001).

Electron Landau Levels

- Lowest five LLs in the CB for x = 0% and 12%
- We take $\beta = -1.0$ eV and $\alpha = 0.5$ eV as values which best represent the observed trends
- Mass and g-factor strongly depend on energy and magnetic field

Cyclotron mass vs. Mn concentration

- When comparing with experiment both sign and values of α and β are important good method to estimate these parameters
- α ~ -0.5 eV, β ~ 1.0 eV
 qualitatively explain the
 observe mass decrease
 From previous studies on II-VI
 DMS:
 - $\circ \alpha$ and β have opposite sign
 - $_{o} |\alpha| < |\beta|$

CR in ferromagnetic p-type $In_{1-x}Mn_xAs$

(*T*-dependence, $\lambda = 10.6 \, \mu \text{m}$, *h*-active)

- Multiple absorption peaks which exhibit strong *T*dependence
- Theoretical analysis under way

Summary: CR in InMnAs

- Electron cyclotron resonance in n-type $In_{1-x}Mn_xAs$ Electron effective mass *decreases* with increasing Mn concentration, x.
- Modified Pidgeon-Brown model (8 x 8 band **k**•**p**)
 - o successfully reproduced this behavior
 - o allows determination of the alpha and beta parameters $\alpha = 0.5 \; eV$ and $\beta = -1 \; eV$
- Hole cyclotron resonance in p-type $In_{1-x}Mn_xAs$
 - Multiple absorption peaks (both free and bound hole)
 - Strong temperature dependence
 - Further analysis should shed new light on the electron states in Mn acceptors

